Penelope Higgs

Faculty Profile

Associate Professor


Biological Sciences


(313) 577-9241


(313) 577-6891


 4115 Biological Sciences Building


Selected Publications

Muñoz-Dorado J, Moraleda-Muñoz A, Marcos-Torres FJ, Contreras-Moreno FJ, Martin-Cuadrado AB, Schrader JM, Higgs PI, Pérez J.Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. Elife. 2019;8:e50374. Published 2019 Oct 14. doi:10.7554/eLife.50374

McLaughlin PT, Higgs PI. A negative autoregulation network motif is required for synchronized Myxococcus xanthus development. bioRxiv 738716; doi:

Feeley BE, Bhardwaj V, McLaughlin PT, Diggs S, Blaha GM, and P.I. Higgs. An amino-terminal threonine/serine motif is necessary for activity of the Crp/Fnr homolog, MrpC, and for Myxococcus xanthus developmental robustness. (2019) Molecular Microbiology doi: 10.1111/mmi.14378

Glaser, M., and P.I. Higgs. The orphan hybrid histidine protein kinase, SinK, acts as a signal integrator to fine-tune multicellular behavior in Myxococcus xanthus.  (2019) Journal of Bacteriology doi: 10.1128/JB.00561-18

McLaughlin, P.T., Bhardwaj, V., Feeley, B.E., and P.I. Higgs.  MrpC, a CRP/Fnr homolog, functions as a negative autoregulator to control the Myxococcus xanthus multicellular developmental program. (2018) Molecular Microbiology 109(2):245

Prüβ BM, Liu J, Higgs PI, Thompson LK. Lessons in Fundamental Mechanisms and Diverse Adaptations from the 2015 Bacterial Locomotion and Signal Transduction Meeting. (2015) Journal of Bacteriology 197:3028-40

Holkenbrink C, Hoiczyk E, Kahnt J, and P.I. Higgs. Synthesis and assembly of a novel glycan layer in Myxococcus xanthus spores. (2014). Journal of Biological Chemistry. 289:32364-78

Higgs. P.I., Hartzell, P.L., Holkenbrink. C., and E. Hoiczyk. Myxococcus xanthus vegetative and developmental cell heterogeneity. (2014). In Myxobacteria: Genomics and Molecular Biology. Yang, Z. and Higgs, P.I. (ed.) Horizon Scientific Press, Norfolk, UK. pp. 51-71

Muñoz-Dorado, J., Higgs, P.I., and M. Elías-Arnanz. Abundance and complexity of signaling mechanisms in the mycobacteria. (2014). In Myxobacteria: Genomics and Molecular Biology. Yang, Z. and Higgs, P.I. (ed.) Horizon Scientific Press, Norfolk, UK. pp. 127-149

Schramm, A., Lee, B. and P.I. Higgs. Intra- and interprotein phosphorylation between two-hybrid histidine kinases controls Myxococcus xanthus developmental progression. (2012) Journal of Biological Chemistry. 287:25060-72

Lee, B., Holkenbrink, C., Treuner-Lange, A., and P.I. Higgs. Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. (2012) Journal of Bacteriology.194:3058-68.

Müller, F., Schink, C., Hoiczyk, E., Cserti, E., and P.I. Higgs. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. (2012) Molecular Microbiology. 83:486-505

Lee, B., Mann, P., Grover, V., Treuner-Lange, A., Kahnt, J., and P.I. Higgs. The Myxococcus xanthus spore cuticula Protein C is a fragment of FibA, an extracellular metalloprotease produced exclusively in aggregated cells. (2011) PLoS One. 6(12):e28968

Müller, F., Treuner-Lange, A., Heider, J., Huntley, S.M., and P.I. Higgs. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. (2010) BMC Genomics. 11:264.

Lee, B., Schramm, A., Jagadeesan S., and P.I. Higgs. Two-component tems and regulation of developmental progression in Myxococcus xanthus. (2010) Methods in Enzymology Volume 471, Chapter 14, Pages 253-278

Jagadeesan, S., Mann, P., Schink, C.W., and P.I. Higgs. A novel "four-component" two-component signal transduction mechanism regulates developmental progression in Myxococcus xanthus. (2009) Journal of Biological Chemistry. 284:21435-45.

Higgs, P.I., Jagadeesan, S., Mann, P., and D.R. Zusman. EspA, an orphan histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. (2008) Journal of Bacteriology. 190:4416-26.

Article highlighted in: Kroos L. Bacterial development in the fast lane. (2008) Journal of Bacteriology. 190:4373-6

P.I. Higgs, and J.P. Merlie, Jr. Myxococcus xanthus: Cultivation, Motility, and Development. In Myxobacteria: Multicellularity and Differentiation. Whitworth, D. (ed.) (2008) ASM, Press, Washington D.C.

Stein, E.A., Cho, K., Higgs, P.I., and D.R. Zusman. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. (2006) Molecular Microbiology. 60:1414&ndash1431

Higgs, P.I., Cho, K., Whitworth, D.E., Evans, L.S., and D.R. Zusman Four Unusual Two-Component Signal Transduction Homologs, RedC to RedF, Are Necessary for Timely Development in Myxococcus xanthus. (2005) Journal of Bacteriology. 187:8191&ndash8195

Courses taught

BIO 4370 W21 Microbial Communities in Health and the Environment 3 Credit hrs

BIO 2200 F20 Introduction to Microbiology 5 Credit hrs

BIO 7040 W20 Signal Transduction Mechanisms 3 Credit hrs

BIO 4350 F19 Bacterial Molecular Genetics Lab 3 Credit hrs

BIO 4370 W19 Microbial Communities in Health and the Environment 3 Credit hrs

BIO 5330 F18 Principals and Applications of Biotechnology 3 Credit hrs

BIO 2200 W18 Introduction to Microbiology  5 Credit hrs

BIO 4350 F17 Bacterial Molecular Genetics Lab 3 Credit hrs

BIO 6120 W17 Molecular biology lab 4 Credit hrs

BIO 5060 F16 Special Topics: Microbial communities in health and the environment  3 Credit hrs

BIO 8995 W16 Graduate Seminar 1 Credit hr

BIO 8000 W16 Special Topics: Signal transduction mechanisms 3 Credit hrs




Research Description

We are molecular microbiologists with interests in signal transduction, gene regulation, cell fate segregation, and microbial differentiation. Our model organism is Myxococcus xanthus, ubiquitous soil bacteria with a fascinating multicellular lifestyle that includes predation, and a starvation-induiced multicellular developmental program. During development, cells segregate into distinct fates. Some cells are directed to migrate into mounds and then differentiate into spores. Alternate cell fates include programmed cell death, formation of a persister-like state and production of matrix-encased aggregates. Our group uses genetic, biochemical and cell biology approaches to understand how this complex behavior is regulated.

Affiliated Departments