Faculty Profile |
|
1117 Faculty/Administration Building
Department of Mathematics
Wayne State University
B. Aksoylu, F. Celiker, and O. Kilicer, Nonlocal operators with local boundary conditions in higher dimensions, Advances in Computational Mathematics, doi.
B. Aksoylu, F. Celiker, and O. Kilicer, Nonlocal operators with local boundary conditions: an overview, Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer, doi.
H. Zhu and F. Celiker, Nodal superconvergence of the LDG method for singularly perturbed problems, J. Computational and Applied Mathematics, 330 (2018), 95-116, doi.
B. Aksoylu, H. Beyer, and F. Celiker, Theoretical foundations of incorporating local boundary conditions into nonlocal problems, Reports on Mathematical Physics, 80(1) (2017), 39-71, doi.
B. Aksoylu, H. Beyer, and F. Celiker, Application and implementation of incorporating local boundary conditions into nonlocal problems, J. Numerical Functional Analysis and Optimization, 38(9) (2017), 1077-1114, doi.
B. Aksoylu and F. Celiker, Nonlocal problems with local Dirichlet and Neumann boundary conditions, J. of Mechanics of Materials and Structures, 12(4) (2017), 425-437, doi.
M.F. Karaaslan, F. Celiker, and M. Kurulay, Approximate solution of the Bagley-Torvik equations by hybridizable discontinuous Galerkin methods, Applied Mathematics and Computation, 285 (2016), 51-58, doi.
H. Zhu and F. Celiker, Error Analysis of an HDG method for a distributed optimal control problem, J. of Computational and Applied Mathematics, 307 (2016), 2-12, doi.
H. Beyer, B. Aksoylu, and F. Celiker, On a class of nonlocal wave equations from applications, J. of Mathematical Physics, 57, 062902 (2016), doi.
F. Celiker and L. Fan, HDG methods for Naghdi arches, J. Sci. Comput., (2014)59, 217-246, doi.
F. Celiker, L. Fan, S. Zhang, and Z. Zhang, Locking-free optimal discontinuous Galerkin methods for a Naghdi-type arch model, J. Sci. Comp., 52(2012), 49-84, doi.
F. Celiker, B. Cockburn, and K. Shi, A projection-based error analysis of HDG methods for Timoshenko beams, Math. Comp., 81(2012), 131-151, doi.
F. Celiker, L. Fan, and Z. Zhang, Element-by-element post-processing of discontinuous Galerkin methods for Naghdi arches Int. J. of Numer. Anal. and Model, 8(2011) 391-409, doi.
H. Farhat, F. Celiker, T. Singh, J.S. Lee, A hybrid lattice Boltzmann model for surfactant-covered droplets, Soft Matter, 7(2011), 1968-1985, doi.
F. Celiker, B. Cockburn, and K. Shi, Hybridizable discontinuous Galerkin methods for Timoshenko beams, J. Sci. Comput., 44(2010), 1-37, doi.
A.T. Eyck, F. Celiker, and A. Lew, Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Analytical estimates, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 33-40, 2989-3000, doi.
F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp., 76(2007), 67-96, doi.
F. Celiker, B. Cockburn, and H.K. Stolarski, Locking-free optimal discontinuous Galerkin methods for Timoshenko beams, SIAM J. Numer. Anal., 44(2006), 2297-2325, doi.